Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Rev. cuba. estomatol ; 60(3)sept. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1536278

ABSTRACT

Introducción: El Sistema de Créditos Transferibles fue desarrollado para traducir la carga de trabajo de los estudiantes en créditos académicos que son reconocidos en todos los países, apuntando al logro del aprendizaje. El aprendizaje autónomo es un objetivo que la mayoría de los programas educativos promueven como una opción estratégica para conectar la profesión, el entorno de estudio y las expectativas profesionales. Objetivo: Analizar las horas de trabajo autónomo utilizadas por los estudiantes para lograr los resultados de aprendizaje determinados en los programas de asignaturas, su efectividad en cuanto al rendimiento académico y su correspondencia con lo establecido en el plan de estudio, ajustado al Sistema de Créditos Transferibles. Métodos: Se realizó un análisis descriptivo transversal retrospectivo a partir de datos de un registro manual de estudiantes (n = 54) y docentes (n = 6) respecto a seis asignaturas de primer nivel de la Carrera de Odontología de la Universidad Autónoma de Chile, sede Temuco. Resultados: Los análisis revelan una incoherencia entre las horas de trabajo autónomo utilizadas por los estudiantes con respecto a lo establecido en el plan de estudio y las horas de trabajo extra-aula estimadas por los profesores. Conclusión: Se concluye que la implementación del Sistema de Créditos Transferibles por sí sola no asegura una mejora en el desempeño de los estudiantes, requiriendo revisar el procedimiento institucional para definirlas; por parte de los docentes una mayor apropiación de los resultados de aprendizajes y la didáctica necesaria para orientar a los estudiantes a obtener un mayor rendimiento del trabajo autónomo, por otro lado, los estudiantes deben ser responsables del uso consciente de dichas horas.


Introduction: The Transferable Credit System was developed to translate student workload into academic credits that are recognized in all countries, aiming at learning achievement. Autonomous learning is an objective that most educational programs promote as a strategic option to connect career, study environment and professional expectations. Objective: Analyzing the hours of autonomous work used by students to achieve the learning outcomes determined in the subject programs, their effectiveness in terms of academic performance and their correspondence with what is established in the study plan, adjusted to the Transferable Credit System. Methods: A retrospective cross-sectional descriptive analysis was carried out using data from a manual record of students (n= 54) and teachers (n= 6) regarding six first level subjects of the Dentistry course of the Universidad Autónoma de Chile, Temuco campus. Results: The analysis revealed an incoherence between the hours of autonomous work used by the students with respect to what is established in the study plan and the hours of extra-classroom work estimated by the professors. Conclusion: It is concluded that the implementation of the Transferable Credit System alone does not ensure an improvement in student performance, requiring a review of the institutional procedure to define them; on the part of teachers a greater appropriation of the learning outcomes and the didactics necessary to guide students to obtain a higher yield of autonomous work, on the other hand, students must be responsible for the conscious use of these hours.

2.
Braz. j. microbiol ; 49(4): 856-864, Oct.-Dec. 2018. graf
Article in English | LILACS | ID: biblio-974294

ABSTRACT

ABSTRACT The growth of yeasts in culture media can be affected by many factors. For example, methanol can be metabolized by other pathways to produce ethanol, which acts as an inhibitor of the heterologous protein production pathway; oxygen concentration can generate aerobic or anaerobic environments and affects the fermentation rate; and temperature affects the central carbon metabolism and stress response protein folding. The main goal of this study was determine the implication of free fatty acids on the production of heterologous proteins in different culture conditions in cultures of Pichia pastoris. We evaluated cell viability using propidium iodide by flow cytometry and thiobarbituric acid reactive substances to measure cell membrane damage. The results indicate that the use of low temperatures and low methanol concentrations favors the decrease in lipid peroxidation in the transition phase from glycerol to methanol. In addition, a temperature of 14 ºC + 1%M provided the most stable viability. By contrast, the temperature of 18 ºC + 1.5%M favored the production of a higher antibody fragment concentration. In summary, these results demonstrate that the decrease in lipid peroxidation is related to an increased production of free fatty acids.


Subject(s)
Pichia/metabolism , Fatty Acids, Nonesterified/metabolism , Pichia/growth & development , Pichia/genetics , Temperature , Recombinant Proteins/genetics , Culture Media/metabolism , Culture Media/chemistry , Methanol/metabolism , Fermentation , Glycerol/metabolism
3.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469650

ABSTRACT

Abstract Nowadays, it is necessary to search for different high-scale production strategies to produce recombinant proteins of economic interest. Only a few microorganisms are industrially relevant for recombinant protein production: methylotrophic yeasts are known to use methanol efficiently as the sole carbon and energy source. Pichia pastoris is a methylotrophic yeast characterized as being an economical, fast and effective system for heterologous protein expression. Many factors can affect both the product and the production, including the promoter, carbon source, pH, production volume, temperature, and many others; but to control all of them most of the time is difficult and this depends on the initial selection of each variable. Therefore, this review focuses on the selection of the best promoter in the recombination process, considering different inductors, and the temperature as a culture medium variable in methylotrophic Pichia pastoris yeast. The goal is to understand the effects associated with different factors that influence its cell metabolism and to reach the construction of an expression system that fulfills the requirements of the yeast, presenting an optimal growth and development in batch, fed-batch or continuous cultures, and at the same time improve its yield in heterologous protein production.

4.
Braz. j. microbiol ; 49(supl.1): 119-127, 2018. tab, graf
Article in English | LILACS | ID: biblio-974317

ABSTRACT

Abstract Nowadays, it is necessary to search for different high-scale production strategies to produce recombinant proteins of economic interest. Only a few microorganisms are industrially relevant for recombinant protein production: methylotrophic yeasts are known to use methanol efficiently as the sole carbon and energy source. Pichia pastoris is a methylotrophic yeast characterized as being an economical, fast and effective system for heterologous protein expression. Many factors can affect both the product and the production, including the promoter, carbon source, pH, production volume, temperature, and many others; but to control all of them most of the time is difficult and this depends on the initial selection of each variable. Therefore, this review focuses on the selection of the best promoter in the recombination process, considering different inductors, and the temperature as a culture medium variable in methylotrophic Pichia pastoris yeast. The goal is to understand the effects associated with different factors that influence its cell metabolism and to reach the construction of an expression system that fulfills the requirements of the yeast, presenting an optimal growth and development in batch, fed-batch or continuous cultures, and at the same time improve its yield in heterologous protein production.


Subject(s)
Pichia/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Carbon/metabolism , Promoter Regions, Genetic , Pichia/growth & development , Pichia/metabolism , Temperature , Industrial Microbiology
5.
Braz. j. microbiol ; 45(2): 475-483, Apr.-June 2014. ilus, graf
Article in English | LILACS | ID: lil-723102

ABSTRACT

Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol -30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol -10 °C and 1% and at methanol -10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris.


Subject(s)
Biomarkers/analysis , Methanol/metabolism , Pichia/drug effects , Pichia/radiation effects , Antioxidants/analysis , Fungal Proteins/analysis , Gene Expression Profiling , Hot Temperature , Oxidative Stress , Pichia/physiology , Stress, Physiological , Temperature
6.
Braz. j. microbiol ; 45(2): 485-490, Apr.-June 2014. ilus, graf
Article in English | LILACS | ID: lil-723103

ABSTRACT

Pichia pastoris is a methylotrophic yeast used as an efficient expression system for heterologous protein production as compared to other expression systems. Considering that every cell must respond to environmental changes to survive and differentiate, determination of endogenous protein related to heat stress responses and hypoxia, it would necessary to establish the temperature and methanol concentration conditions for optimal growth. The aim of this study is characterize the culture conditions through the putative biomarkers in different conditions of temperature and methanol concentration. Three yeast cultures were performed: 3X = 3% methanol -10 °C, 4X = 3% methanol -30 °C, and 5X = 1% methanol -10 °C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. The western blot results of HIF-1α and HSP-90 did not indicate statistically significant in the culture conditions studied. Respect to biomarkers location, HIF-1α and HSP-90 presented differences between cultures. In conclusion, the results suggest the cultures in a hypoxic condition produce a high density and yeast cells smaller. Beside the high density would not necessary related with a high production of recombinant proteins in modified-genetically P. pastoris.


Subject(s)
Fungal Proteins/analysis , Pichia/chemistry , Pichia/growth & development , Anaerobiosis , Batch Cell Culture Techniques , Blotting, Western , Fermentation , Immunohistochemistry , Methanol/metabolism , Temperature
7.
Braz. j. microbiol ; 44(4): 1043-1048, Oct.-Dec. 2013. ilus
Article in English | LILACS | ID: lil-705251

ABSTRACT

Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry.


Subject(s)
Humans , Biotechnology/methods , Health Care Sector , Industrial Microbiology/methods , Organisms, Genetically Modified , Pichia/genetics , Pichia/metabolism , Technology, Pharmaceutical/methods
8.
Biol. Res ; 46(1): 59-67, 2013. ilus, tab
Article in English | LILACS | ID: lil-676822

ABSTRACT

In the past two decades, Chile has developed intense mining activity in the Andes mountain range, whose altitude is over 4,000 meters above sea level. It is estimated that a workforce population of over 55,000 is exposed to high altitude hypobaric hypoxia. The miners work under shift systems which vary from 4 to 20 days at the worksite followed by rest days at sea level, in a cycle repeated for several years. This Chronic Intermittent Hypoxia (CIH) constitutes an unusual condition for workers involving a series of changes at the physiological, cellular and molecular levels attempting to compensate for the decrease in the environmental partial pressure of oxygen (PO2). The mine worker must become acclimatized to CIH, and consequently undergoes an acute acclimatization process when he reaches the worksite and an acute reverse process when he reaches sea level. We have observed that after a period of 3 to 8 years of CIH exposure workers acclimatize well, and evidence from our studies and those of others indicates that CIH induces acute and chronic multisystem adjustments which are effective in offsetting the reduced availability of oxygen at high altitudes. The aims of this review are to summarize findings of the physiological responses to CIH exposure, highlighting outstanding issues in the field.


Subject(s)
Humans , Altitude , Atmospheric Pressure , Acclimatization/physiology , Mining , Oxidative Stress/physiology , Wilderness Medicine/methods , Antioxidants/metabolism , Chile , Hypertension, Pulmonary/physiopathology , Polycythemia/physiopathology
9.
Biol. Res ; 45(1): 81-85, 2012. ilus
Article in English | LILACS | ID: lil-626751

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine) is the main secretory product of the pineal gland in all mammals including humans, but it is also produced in other organs. It has been previously demonstrated to be a powerful organ-protective substance under oxidative stress conditions. The aim of this study was to evaluate the protective effect of melatonin in several organs such as heart, lung, kidney, and of the reproductive system, such as testis and epididymis in animals exposed to intermittent hypobaric hypoxia and therefore exposed to oxidative stress and analyzed by lipid peroxidation. Ten-week-old male Wistar rats were divided into 6 groups for 96 hours during 32 days under: 1) Normobaric conditions, 2) plus physiologic solution, 3) plus melatonin, 4) intermittent hypobaric hypoxia, 5 plus physiologic solution and 6) plus melatonin. The animals were injected with melatonin (10 mg/kg body weight) at an interval of 96 hours during 32 days. Results indicated that melatonin decreased lipid peroxidation in heart, kidneys and lung under intermittent hypobaric hypoxia conditions. However, it did not exhibit any protective effect in liver, testis, epididymis and sperm count.


Subject(s)
Animals , Male , Rats , Hypoxia/drug therapy , Antioxidants/pharmacology , Lipid Peroxidation/physiology , Melatonin/pharmacology , Oxidative Stress/drug effects , Hypoxia/chemically induced , Epididymis/drug effects , Heart/drug effects , Kidney/drug effects , Liver/drug effects , Lung/drug effects , Rats, Wistar , Reactive Oxygen Species/metabolism , Testis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL